2nd Nationwide Health Information Network Forum: Health Information Network Security and Services

October 16-17, 2006

Panel Discussion

Matching Patient Data

Don Grodecki, President, Browsersoft Inc, Chief Architect, OpenHRE™ Connecting for Health NHIN Team

Dave "Casey" Webster, Chief Architect

Data Needs for Matching Patients without Unique Identifiers

 Information Exchange between disparate healthcare systems depend on ability to match patient identities without benefit of common identifiers

The Problem:

- Given sets of identifying information (matching variables) ...
 - e.g. Name, Date of Birth, Address, SSN (perhaps), ...
- For a set, or multiple sets, of patient records ...
- Determine which of the records are for the same patient

Theory of Probabilistic Matching

- A Matching Rule divides the set of all possible record pairs into three sets:
 - L: (Matched, or Linked)
 - N: (Not matched)
 - C: (not determined, needs Clerical review)
- The Sensitivity (m) of a rule is the probability that the rule declares a match when there really is a match
 - 1-m is the probability of a false negative
- The Specificity (1-u) of a rule is the probability that the rule predicts a non-match when there really is a non-match
 - u is the probability of a false positive
- Obviously we want both Sensitivity and Specificity to be high
- As an example, using the stated value of "Gender" to decide a match has high Sensitivity (0.99..) but low Specificity (0.5)

Theory of Probabilistic Matching

 Standard practice is to build a rule using the weighted sum of the values of comparators that each evaluate the match of a single matching variable and assign a value between "0" and "1" to the match.

The L, C, and N sets are determined from cutoff values applied to

the combined score.

Theory of Probabilistic Matching

- u ~ u₁ x u₂ x ... x u_k x ... x u_K
 - so, we minimize false positives by comparing a sufficient number of independent variables with high specificity
- Fellegi and Sunter (1969) proved that the "optimal" weight for the comparator for independent variable "k" is:
 - $log_2(m_k)/log_2(u_k)$
- "Optimal" in the sense that the L and N sets are maximally "distinct"

Process

Data Cleaning

- The possibility of matching is greatly enhanced by pre-processing the variables using specific algorithms for each variable
 - Remove most punctuation in names
 - Removing bad values: e.g. "9999...", "0000..."

Standardization

- Upper/lower case
- Mapping nicknames to standard names
- USPS address processing services

Pre-processing

Computing phonetically encoded values, e.g. Soundex

Blocking

Optimizing database queries by a-priori requiring some exact matches

Post-Processing

Using nearness operators on a set of candidate matches

Clerical Intervention

Manual processing, a-priori and/or on-the-fly

Patient Matching Errors and their Impacts

- Bad match ("false positive")
 - Violation of privacy of wrongly matched individual
 - Data returned could impact diagnosis and/or treatment
 - Clinician and patient faith in the system adversely impacted
- Missed Match ("false negative")
 - Missing data could be important to diagnosis or treatment (recurring symptoms, allergies, repeated tests)
 - Clinicians won't trust a system they perceive as delivering partial information

Patient Matching Challenges that Affect Accuracy

No universal patient identifier

Nor would one work, reference Great Britain

Demographics change

- Americans age 18-65 average 1 move every 5-6 years
 - Every year 35% of Americans age 20-30 move
- Telephone numbers change frequently/Multiple numbers common
- Name changes due to marriage, divorce, other

Cultural Impact

- Soundex, Metaphone based on names of European descent
- Cultural diversity impacts "near-match" algorithms
 - Longest Common Substring, Levenshtein Edit Distance do poorly on names like "Lee", "Li", "Leigh"

Patient Matching Challenges that Affect Accuracy

Quality of data

- Name suffixes (Jr, Sr, III, etc) are often omitted
- Compound (hyphenated) last names increasingly common
- Missing middle name does not imply lack of a middle name
- Names often have multiple spellings or variants
 - Smith/Smythe, Mac/Mc, Dave/David

Special Cases

- Single names ("Cher", "Bono")
- George Foreman

Architectural Approaches

Centralized Matching +/- All demographics available, but perhaps not populated + Matches will be consistent across the entire NHIN - Requires centralized database, privacy - Performance may be an issue	Local (Community) Matching +Community has personal knowledge of patients, which can aid in matching - Available demographics limited to what each community "knows" - Match success depends on community - Need to link individuals across communities
Homogenous Matching (Single System) + Algorithms and data are consistent + Same input always results in same result - Simplifies administration and validation	 Eclectic Matching (Multiple Systems) + Leverages existing matching systems that already work and may have large clerical investment + Lowers barrier to entry for some org's - Tuning and administration require coordinated effort - Same input may result in different results due to differences in underlying matching algorithms
Deterministic Matching	Probabilistic (Stochastic) Matching +/- Tradeoff between potentially missing a match vs returning a mismatch

Architectural Approaches

Persistent Matching + Once a match is made, it is permanent + Potential for a-prioi clerical review - Requires all systems involved be able to (logically or physically) persist the match	Transient Matching - Matches occur "on-the-fly" and could result in different matches over time + Easier to integrate existing systems
All-or-Nothing +/- Returns either a match or nothing + Simplifies use of the results + Better privacy of patient list - Higher rate of false negatives	 List of Candidates + Returns potential matches with a match probability and allows end user to choose + Fewer false negatives - Potentially more false positives - Potentially exposes another patient's data

Questions for Discussion

- Is there an allowable threshold of "false positives"?
- What is the minimum acceptable threshold for "false negatives"?
 - How does the age of the data affect this threshold?
- Is further matching necessary to tie providers to patients?